نوشته‌ها

ارت - امداد برق پایتخت

شرایط جدید واگذاری انشعاب برق به ساختمان

براساس تفاهم نامه سه جانبه بین وزارت نيرو، راه و شهرسازي و سازمان نظام مهندسي شيوه نامه اجراي نظارت بر طراحي و اجراي استاندارد تاسيسات برق كليه اماكن ابلاغ شد.
از اين پس انشعاب برق تنها به ساختمان‌هايي كه بر حسب شيوه اجرايي مذكور داراي سيستم حفاظتي مناسب از جمله سيستم ارت با مقاومت مناسب، هادي حفاظتي PE و قطع كننده هاي مناسب و ۳VF (راه انداز نرم) باشند، واگذار خواهد شد.
براساس اين شيوه نامه اجرايي، رعايت حريم شبكه‌هاي الكتريكي، تامين سيستم زمين مناسب در ساختمان، هم بندي سیستم زمين با نول ورودي لوازم اندازه گيري، وجود سيم سوم (PE) در داخل ساختمان، وجود ۳VF (راه انداز نرم) در آسانسور و وجود كليد RCCB درهمه امكان توسط سازندگان الزامي است.

 

مسیر واگذاری انشعاب برق به مشترک

* مراجعه ی متقاضی به واحد خدمات مشترکین امور برق ذیربط و درخواست تامین برق
*  ثبت و تکمیل فرمت درخواست انشعاب و ارائه مدارک و مجوزهای لازم و مورد نیاز
* بررسی امور برق از مدارک و مستندات ارائه شده و تائید یا راهنمائی جهت ارائه مدارک جدید
* هماهنگی با متقاضی جهت بازدید محل
* بازدید محل و تهیه طرح و کروکی نحوه ی تامین برق توسط مامور بازدید محل
* بررسی طرح تهیه شده در کمیسیون «در صورت نیاز و جهت متقاضیان دیماندی»
* در صورت عدم امکان تامین برق ، اعلام موارد به متقاضی
* در صورت امکان تامین برق صدور اعلام شرائط و همچنین صدور قبض خدمات انشعاب و تحویل آن به متقاضی جهت امضاء و پرداخت
* پرداخت هزینه توسط متقاضی و اعلام آن به امور برق ذیربط
* انعقاد قرارداد نحوه ی تامین برق«جهت متقاضیان دیماندی و آن دسته که نیاز به احداث پست دارند» و انجام آن توسط متقاضی با استفاده از پیمانکاران ذیصلاح
* پیگیری نصب کنتور و ثبت مشخصات آن
* ایجاد سابقه در سیستم جهت قرائت کنتور در دوره های بعد
* بایگانی مدارک


امداد برق پایتخت

IP_PHONE راه اندازی مرکز تلفن تحت شبکه (voip)

IP_PHONE

 

IP_PHONE >> هنگامی که شبکه‌های کامپیوتری جای خود را میان شرکت‌های بزرگ و گسترده باز نمود و از این طریق، مشکل ارتباطات اطلاعاتی میان بخش‌های مختلف سازمان را مرتفع نمود، دور از انتــظار نــبود . بستــرهای ارتبــاطی مبتــنی بــر (IP(Internet Protocol، مرز شبکه‌های کامپیوتری را در نوردیده و به سایر ارتباطات درون سازمانی مانند ارتباطات صوتی و تصویری نیز راه یابد . دستگاه‌های PBX در سیستم‌های مخابراتی و ارتباطات تلفنی درون سازمانی مورد استفاده قرار می‌گیرند و در نقش یک مرکز هدایت ارتباطات، عملیات تسهیل و سرعت‌بخشی و سوییچینگ میان بخش‌های مختلف را انجام می‌دهند.

شرکت‌ها و سازمان‌های بزرگی که از تجهیزات گسترده شبکه‌های کامپیوتری استفاده کرده و اقدام به راه‌اندازی شبکه‌های کامپیوتری LAN درون سازمانی نموده‌اند، قادر می‌باشند IP-PBX را جایگزین دستگاه‌های PBX قدیمی نمایند . علاوه بر استفاده از مزیت‌ها و سودمندی‌های فراوان IP PBX، سرویس‌های جدیدی را نیز ارائه دهند . یک سیستم IP-PBX که IP Telephony نیز نامیده می‌شود، سیستمی است که می تواند مکالمات را در بستر IP مدیریت نماید. با رواج اینترنت و شبکه‌های کامپیوتری، میتوان با استفاده از IP_PBX علاوه بر کنترل تماس‌ها در داخل سازمان، به راحتی ارتباطات خارج از کشور و راه دور را با استـفاده از بستـر IP صـورت داد . یــک سیستـم IP-PBX از تجهیــزات IP_PHONE ها، IP_PBX Server و بصورت اختیاری از VoIP Gateway تشکیل شده است.

 

 

سه دلیل عمده نصب و راه‌ندازی یک سیستم IP_PHONE

  • کاهش هزینه‌ها
  • یکپارچه‌سازی سیستم‌های ارتباطی درون سازمانی
  • بهره‌مندی از قابلیت‌ها و سرویس‌های جدید.

 

مزایای به کارگیری IP_PHONE

  • ارتباطات یکپارچه صوت، تصویر، دیتا و جابجایی
  • مجموعه سرویس های ارزش افزوده وسیعتر و در دسترس تر نظیر مرکز تماس (Call/Contact Centre)، SMS، IM (Instant Messaging)، VM (Voice Mail)، Auto-attendant و IP_PHONE …
  • اضافه و کم کردن IP_PHONE بدون نیاز به تغییر در MDF به آسانی جابجا کردن گوشی از میزی به میز دیگر
  • قابلیت ارتقاء بهتر و کم هزینه تر
  • زیر ساخت مشترک با شبکه کامپیوتری بدون نیاز به کابلکشی مجزا برای ارتباطات تلفنی/تصویری
  • هزینه راه اندازی پایین تر
  • تجهیزات ساده تر و نگهداری ارزان تر
  • بهبود راهکارهای گسترش و تغییر مقیاس سیستم (Scalability)
  • گریز از اشغال شدن خطوط مخابراتی و کاهش هزینه ها به علت ارتباطات بین ساختمانی
  • امکان در اختیار نهادن خدمات تلفنی به هر شخص دارای کامپیوتر . بدون نیاز به خرید سخت افزار تلفن با استفاده از بستر شبکه کامپیوتری (Soft phone)
  • امکان استفاده از تلفنهای بی سیم مرکزی (دکت) برای مدیران یا افراد سیار در ساختمانها
  • قابلیت توسعه سیستم به ارتباطات بین شهری با هزینه پایین (فارغ از تعرفه های مخابراتی)

    امداد برق پایتخت
    مقالات امداد برق

رآکتور نیروگاه هسته ای

 

مقالات امداد برق - رآکتور

طراحی یک رآکتور

رآکتور ها اغلب در قلب آنها دمای بسیار زیادی دارد که باید خنک شود. در یک نیروگاه هسته ای، سیستم خنک ساز به نوعی طراحی میشود که از گرمای آزاد شده به بهترین شکل ممکن استفاده شود. در اغلب این سیستمها از آب استفاده میشود . اما آب نوعی کند کننده هم محسوب میشود و از این رو نمی تواند در رآکتورهای سریع مورد استفاده قرار گیرد. در رآکتورهای سریع از سدیم مذاب یا نمک های سدیم استفاده میشود و دمای عملیاتی خنک ساز بالاتر است. در رآکتورهایی که برای تبدیل مورد طراحی شده اند، به راحتی گرمای آزاد شده را در محیط آزاد میکنند. در یک نیروگاه هسته ای، رآکتور کند منبع آب را گرم میکند و آن را به بخار تبدیل میکند. بخار آب توربین بخار را به حرکت در میآورد ، توربین نیز ژنراتور را می چرخاند و به این ترتیب انرژی تولید میشود. این آب و بخار آن در تماس مستقیم با راکتور هسته ای است و از این رو در معرض تابش های شدید رادیواکتیو قرار میگیرند. برای پیشگیری از هر گونه خطر مرتبط با این آب رادیواکتیو، در برخی رآکتورها بخار تولید شده را به یک مبدل حرارتی ثانویه وارد میکنند و از آن به عنوان یک منبع گرمایی در چرخه دومی از آب و بخار استفاده میکنند. بدین ترتیب آب و بخار رادیواکتیو هیچ تماسی با توربین نخواهند داشت.

انواع رآکتورهای گرمایی در در رآکتورهای گرمایی علاوه برکند کننده، سوخت هسته ای ( ایزوتوپ قابل شکافت القایی)، مخزن بخار و لوله های منتقل کننده آن، دیواره های حفاظتی و تجهیزات کنترل و مشاهده سیستم رآکتور نیز وجود دارند. البته بسته به این که این رآکتورها از کانالهای سوخت فشرده شده، مخزن بزرگ بخار یا خنک کننده گازی استفاده کنند، میتوان آنها را به سردسته تقسیم کرد. الف – کانالهای تحت فشار در رآکتورهای RBMK و CANDU استفاده میشوند و میتوان آنها را در حال کارکردن رآکتور، سوخت رسانی کرد. ب – مخزن بخار پرفشار داغ، رایج ترین نوع رآکتور است و در اغلب نیروگاههای هسته ای و رآکتورهای دریایی ( کشتی، ناوهواپیمابر یا زیردریایی ) از آن استفاده میشود. این مخزن میتواند به عنوان لایه حفاظتی نیز عمل کند. ج – خنک سازی گازی: در این رآکتورها به جای آب، از یک سیال گازی شکل برای خنک کردن رآکتور استفاده میشود. این گاز در یک چرخه گرمایی با منبع حرارتی راکتور قرار میگیرد و معمولاً از هلیوم برای آن استفاده میشود، هر چند که نیتروژن و دی اکسید کربن نیز کاربرد دارند. در برخی رآکتورهای جدید، رآکتور به قدری گرما تولید میکند که گاز خنک کن میواند مستقیما یک توربین گازی را بچرخاند، در حالی که در طراحی های قدیمی تر گاز خنک کن را به یک مبدل حرارتی میفرستادند تا در یک چرخه دیگر، آب را به بخار تبدیل کند و بخار داغ، یک توربین بخار را بگرداند.

  1. بقیه اجزای نیروگاه هسته ای

غیر از رآکتور که منبع گرمایی است، تفاوت اندکی بین نیروگاه هسته ای و یک نیروگاه حرارتی تولید برق با سوخت فسیلی وجود دارد. مخزن بخار تحت فشار معمولا درون یک ساختمان بتونی تعبیه میشود که این ساختمان به عنوان یک سد حفاظتی در برابر تابش رادیواکتیو عمل میکند. این ساختمان هم درون یک مخزن بزرگتر فولادی قرار میگیرد. هسته رآکتور و تجهیزات مرتبط با آن درون این مخزن فولادی قرار گرفته اند و کارکنان میتوانند راکتور را تخلیه یا سوخت رسانی کنند. وظیفه این مخزن فولادی، جلوگیری از نشت هر گونه گاز یا مایع رادیواکتیو از درون سیال است. در نهایت این مخزن فولادی هم به وسیله یک ساختمان بتونی خارجی محافظت میشود. این ساختمان به قدری محکم است که در برابر اصابت یک هواپیمای جت مسافربری ( مشابه حادثه یازده سپتامبر ) هم تخریب نمی شود. وجود این ساختمان حفاظتی دوم برای جلوگیری از انتشار مواد رادیواکتیو در اثر هرگونه نشت از حفاظ اول ضروری است. در حادثه انفجار چرنوبیل، فقط یک ساختمان حفاظتی وجود داشت و همان موجب شد موادراکتیو در سطح اروپا پخش شود.

  1. رآکتور های هسته ای طبیعی

در طبیعت هم میتوان نشانه هایی از رآکتور در نیروگاه هسته ای پیدا کرد، البته به شرطی که تمام عوامل مورد نیاز به طور طبیعی در کنار هم قرار گرفته باشند. تنها نمونه شناخته شده یک رآکتور هسته ای طبیعی دو میلیارد سال پیش در منطقه اوکلو در کشور گابون ( قاره آفریقا ) فعالیتش را آغاز کرده است. البته دیگر چنین رآکتورهایی روی زمین شکل نمی گیرند، زیرا واپاشی رادیواکتیو این مواد ( به خصوص U-235 ) در این زمان طولانی 5/4 میلیارد ساله ( سن زمین )، فراوانی U-235 را در منابع طبیعی این رآکتورها بسیار کاهش داده است، به طوری که مقدار آن به پایین تر از حد مورد نیاز آغاز یک واکنش زنجیره ای رسیده است. این رآکتورهای طبیعی زمانی شکل گرفتند که معادن غنی از اورانیوم به تدریج از آب زیرزمینی یا سطحی پر شدند. این آب به صورت کند کننده عمل کرد و واکنش های زنجیره ای شدیدی به وقوع پیوست. با افزایش دما، آب کند کننده بخار می شد و رآکتور خاموش شد. پس از مدتی، این بخارها به مایع تبدیل میشدند و دوباره رآکتور به راه می افتاد. این سیستم خودکار و بسته، یک رآکتور را کنترل می کرد و برای صدها هزار سال، این رآکتور را فعال نگاه می داشت. مطالعه و بررسی این رآکتورهای هسته ای طبیعی بسیار ارزشمند است، زیرا میتواند به تحلیل چگونگی حرکت مواد رادیواکتیو در پوسته زمین کمک کند. اگر زمین شناسان بتوانند را از این حرکت ها را شناسایی کنند، میتوانند راه حل های جدیدی برای دفن زباله های هسته ای پیدا کنند تا روزی خدای ناکرده، این ضایعات خطرناک به منابع آب سطح زمین نشت نکنند و فاجعه ای بشری به بار نیاورند.

  1. انواع رآکتور های گرمایی

الف – کند سازی با آب سبک: a- رآکتور آب تحت فشار Pressurized Water Reactor(PWR) b- رآکتور آب جوشان Boiling Water Reactor(BWR) c- رآکتور D2G

ب- کند سازی با گرافیت: a- ماگنوس Magnox b- رآکتور پیشرفته با خنک کنندی گازی Advanced Gas-Coaled Reactor (AGR) c- RBMK d- PBMR

ج – کند کنندگی با آب سنگین: a – SGHWR b – CANDU

  1. رآکتور آب تحت فشار، PWR

رآکتور PWR یکی از رایج ترین راکتورهای هسته ای است که از آب معمولی هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده میکند. در یک PWR، مدار خنک اولیه از آب تحت فشار استفاده میکند. آب تحت فشار، در دمایی بالاتر از آب معمولی به جوش می آید، از این دوچرخه خنک ساز اولیه را به گونه ای طراحی می*کنند که آب با وجود آنکه دمایی بسیار بالا دارد، جوش نیاید و به بخار تبدیل نشود. این آب داغ و تحت فشار در یک مبدل حرارتی، گرما را به چرخه دوم منتقل میکند که یک نوع چرخه بخار است و از آب معمولی استفاده میکند. دراین چرخه آب جوش می آید و بخار داغ تشکیل می شود، بخار داغ یک توربین بخار را می چرخاند، توربین هم یک ژنراتور و در نهایت ژنراتور، انرژی الکتریکی تولید می کند. PWR به دلیل دارابودن چرخه ثانویه با BWR تفاوت دارد. از گرمای تولیدی در PWR به عنوان سیستم گرم کننده درنواحی قطبی نیز استفاده شده است. این نوع رآکتور، رایج ترین نوع رآکتورهای هسته ای است و در حال حاضر، بیش از 230 عدد از آنها در نیروگاههای هسته ای تولید برق و صدها رآکتور دیگر برای تأمین انرژی تجهیزات دریایی مورد استفاده قرار میگیرند.

  1. خنک کننده رآکتور های هسته ای

همان طور که میدانید، برخورد نوترونها با سوخت هسته ای درون میله های سوخت، موجب شکافت هسته اتمها میشود و این فرآیند هم به نوبه خود، گرما و نوترونهای بیشتری آزاد میکند. اگر این حرارت آزاد شده منتقل نشود، ممکن است میله های سوخت ذوب شوند و ساختار کنترلی رآکتور از بین برود ( و البته خطرهای مرگ آوری که به دنبال آن روی می دهند. ) در PWR، میله های سوخت به صورت یک دسته در ساختاری، ترسیمی قرار گرفته اند و آب از کف رآکتور به بالا جریان پیدا میکند. آب از میان این میله های سوخت عبور میکند و به شدت گرم میشود، به طوری که به دمای 325 درجه سانتی گراد میرسد. درمبدل حرارتی، این آب داغ موجب داغ شدن آب در چرخه دوم میشود و بخاری با دمای 270 درجه سانتی گراد تولید میکند تا توربین را بچرخاند.

  1. کند کننده

نوترونهای حاصل از یک شکافت هسته ای بیش از آن حدی گرمند که بتوانند یک واکنش شکافت هسته ای را آغاز کنند. انرژی آنها را باید کاهش داد تا با محیط اطراف خود به تعادل گرمایی برسند. محیط اطراف نوترونها ( قلب رآکتور ) دمایی در حدود 450 درجه سانتی گراد دارد. در یک PWR، نوترونها در پی برخورد با مولکولهای آب خنک ساز، انرژی جنبشی خود را از دست میدهند؛ به طوری که پس از 8 تا 10 برخورد ( البته به طور متوسط ) با محیط هم دما میشوند. در این حالت، احتمال جذب نوترونها از سوی هسته U-235 بسیار زیاد است ودر صورت جذب، بالافاصله هسته U-236 جدید دچار شکافت میشود. مکانیسم حساسی که هر رآکتور هسته ای را کنترل میکند، سرعت آزاد سازی نوترونها در طول یک فرآیند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زیادی انرژی آزاد میشود. نوترونهای آزاد شده اگر با هسته U-235 دیگری برخورد کنند، شکافت دیگری را سبب میشوند و در نهایت یک واکنش زنجیره ای روی می دهد. اگر تمام این نوترونها در یک لحظه آزاد شوند، تعدادشان به قدری زیاد میشود که باعث ذوب شدن راکتور خواهد شد. ( تعداد ذرات پر انرژی، دمای یک سیستم را تعیین میکند. معادله بوتنرمن، این ارتباط را توصیف میکند. ) خوشبختانه برخی از این نوترونها پس از یک بازه زمانی نه چندان کوتاه ( حدود یک دقیقه ) تولید میشوند و سبب میشوند دیگر عوامل کنترل کننده از این تاخیر زمانی استفاده کرده، اثر خود را داشته باشند. یکی از مزیت های استفاه از آب در PWR، این است که اثر کند سازی آب با افزایش دما کاهش مییابد. در حالت عادی، آب در فشار 150 برابر فشار یک اتمسفر قرار دارد ( حدود 15 مگا پاسکال ) و در قلب رآکتور به دمای 325 درجه سانتی گراد میرسد. درست است که آب با فشار پانزده مگا پاکسال در این دما جوش نمی آید، ولی به شدت از خاصیت کند کنندگی اش کاسته میشود، بنابراین آهنگ واکنش شکافت هسته ای کاهش مییابد، حرارت کمتری تولید میشود و دما پایین می آید. دما که کاهش یابد، توان رآکتور افزایش می یابد و دما که افزایش یابد توان راکتور کاهش مییابد؛ پس خود سیستم PWR دارای یک سیستم خود تعادلی در رآکتور است و تضمین میکند توان رآکتور در کمترین میزان مورد نیاز برای تأمین گرمای سیستم بخار ثانویه است. در اغلب رآکتورهای PWR، توان رآکتور را در دوره فعالیت معمولی با تغییرات غلظت بورون ( در شکل اسید بوریک ) در چرخه خنک کننده اولیه کنترل اولیه کنترل میکنند سرعت جریان خنک کننده اول در رآکتورهای PWR معمولی ثابت است. بورون یک جذب کننده قوی نوترون است و با افزایش یا کاهش غلظت آن، میتوان شدت فعالیت راکتور را کاهش یا افزایش داد. برای این کار، یک سیستم کنترلی پیچیده شامل پمپ های فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج میکند، تجهیزات تغییر غلظت اسید بوریک و تزریق مجدد آب به چرخه خنک ساز مورد نیاز است. یکی از اشکالات راکتورهای شکافت، این است که حتی پس از توقف واکنش شکافت، هنوز هم واپاشی های رادیواکتیوی انجام میشود و حرارت زیادی آزاد میشود که میتواند راکتور را ذوب کند. البته سیستم های حفاظتی و پشتیبانی متعددی برای جلوگیری از این واقعه وجود دارند، با این حال ممکن است در اثر پیچیدگی های این سیستم، برهمکنش های پیش بینی نشده یا خطاهای عملیاتی مرگ آفرینی در شرایط اضطراری روی دهند. در نهایت، هر رآکتور با یک حفاظ ساختمانی بتونی احاطه شده است که آخرین سد در برابر تشعشعات رادیواکتیو است.

  1. رآکتور آب جوشان، BWR

در رآکتور آب جوشان، از آب سبک استفاده میشود. آب سبک، آبی است که در آن فقط هیدروژن معمولی وجود دارد. ) BWR اختلاف زیادی با رآکتور آب تحت فشار ندارد، غیر از اینکه در BWR فقط یک چرخه خنک کننده وجود دارد و آب مستقیما در قلب راکتور به جوش می آید. فشار آب در BWR کمتر از PWR است، به طوری که در بیشترین مقدار به 75 برابر فشار جو میرسد ( 5/7 مگا پاسکال ) و بدین ترتیب آب در دمای 285 درجه سانتی گراد به جوش می آید. رآکتور BWR به شکلی طراحی شده که بین 12 تا 15 درصد آب درون قلب رآکتور به شکل بخار در قسمت بالای آن قرار میگیرد. بدین ترتیب عملکرد بخش بالایی و پایینی هسته رآکتور با هم تفاوت دارند. در بخش بالایی قلب رآکتور، کند سازی کمتری صورت میگیرد و در نتیجه بخش بالایی کمتر است. در حالت کلی دو مکانیسم برای کنترل BWR وجود دارد: استفاده از میله های کنترل و تغییر جریان آب درون راکتور. الف – بالا بردن یا پایین آوردن میله های کنترل، روش معمولی کنترل توان رآکتور در حالت راه اندازی رآکتور تا رسیدن به 70 درصد حداکثر توان است. میله های کنترل حاوی مواد جذب کننده نوترون هستند؛ در نتیجه پایین آوردن آنها موجب افزایش جذب نوترون در میله ها، کاهش جذب نوترون در سوخت و درنهایت کاهش آهنگ شکافت هسته ای و پایین آمدن توان رآکتور میشود. بالا بردن میله های سوخت دقیقاً نتیجه معکوس میدهد. ب – تغییرات جریان آب درون رآکتور، زمانی برای کنترل رآکتور مورد استفاده قرار میگیرد که راکتور بین 70 تا صد درصد توان خود کار میکند. اگر جریان آب درون رآکتور افزایش یابد، حباب های بخار در حال جوش سریع تر از قلب راکتور خارج میشوند و آب درون قلب رآکتور بیشتر میشود. افزایش مقدار آب به معنی افزایش کندسازی نوترون و جذب بیشتر نوترونها از سوی سوخت است و این یعنی افزایش توان راکتور. با کاهش جریان آب درون رآکتور، حباب ها بیشتر در رآکتور باقی می مانند، سطح آب کاهش می یابد و به دنبال آن کندسازی نوترونها و جذب نوترون هم کاهش می یابد و در نهایت توان رآکتور کاهش مییابد. بخار تولید شده در قلب رآکتور از شیرهای جدا کننده بخار و صفحات خشک کن ( برای جذب هر گونه قطرات آب داغ ) عبور میکند و مستقیماً به سمت توربین های بخار که بخشی از مدار رآکتور محسوب میشوند، می رود. آب اطراف رآکتور همواره در معرض تابش و آلودگی رادیواکتیو است و از آنجا که توربین هم در تماس مستقیم با این آب است، باید پوشش حفاظتی داشته باشد. اغلب آلودگی های درون آب عمر کوتاهی دارند ( مانند N16 که بخش اعظم آلودگی های آب را تشکیل می*دهد و نیمه عمرش تنها 7 ثانیه است )، بنابراین مدت کوتاهی پس از خاموش شدن رآکتور میتوان به قسمت توربین وارد شد. در رآکتور BWR، افزایش نسبت بخار آب به آب مایع درون رآکتور موجب کاهش گرمای خروجی میشود. با این حال، یک افزایش ناگهانی در فشار بخار، سبب بروز یک کاهش ناگهانی در نسبت بخار به آب مایع درون رآکتور میشود که خود، سبب افزایش توان خروجی میشود. این شرایط و دیگر حالت های خطرساز، موجب شده است از سیستم کنترلی اسید بوریک ( بورون ) نیز استفاده شود، بدین شکل که در سیستم پشتیبان خاموش کننده اضطراری، محلول اسید بوریک با غلظت بالا به چرخه خنک کننده تزریق میشود. خوبی این سیستم این است که اسید اوریک، یک خورنده قوی است و معمولا در PWR سبب میشود تلفات ناشی از خوردگی قابل توجه باشد. در بدترین شرایط اضطراری که تمام سیستم های امنیتی از کار افتاد، هر رآکتور به وسیله یک ساختمان حفاظتی از محیط اطراف جدا شده است. در یک رآکتور BWR جدی، حدود 800 دسته واحد سوخت قرار میگیرد و در هر دسته بین 74 تا 100 میله سوخت قرار میگیرد. این چنین حدود 140 تن اورانیوم در قلب رآکتور ذخیره میشود.

  1. رآکتور D2G

رآکتور هسته ای D2G را میتوان در تمام ناوهای دریایی ایالات متحده میتوان پیدا کرد. D2G مخفف عبارت زیراست: رآکتور ناو جنگی D=Destroyer-sized reactor نس دوم 2=Second Geneation ساخت جنرال الکتریک G= General – Electric built بدین ترتیب، D2G را میتوان مخفف این عبارت دانست: رآکتور هسته ای نسل دوم ویژه ناوهای جنگی ساخت جنرال الکتریک. این رآکتور برای تولید حداکثر 150 مگا وات انرژی الکتریکی و عمر مفید 15 سال مصرف معمولی طراحی شده است. در این رآکتور، برای مخزن بخار دو رآکتور وجود دارد و طوری طراحی شده که بتوان هر دو اتاق توربین را با یک رآکتور به راه انداخت. اگر هر دو رآکتور فعال باشند، ناو به سرعت 32 گره میرسد. اگر یک رآکتور فعال باشد و توربین ها متصل به هم باشند، سرعت ناو به 25 تا 27 گره خواهد رسید و اگر فقط یک رآکتور فعال باشد ولی توربین ها جدا باشند، سرعت فقط 15 گره خواهد بود.


ارسال شده توسط whiteapple

مقالات امداد برق پایتخت

مصرف

نيروگاه بخاري : نيروگاهي است كه در آن از انرژي حرارتي سوخت هاي مايع، جامد وگاز جهت توليد بخار و مصرف آن در توربين هاي بخار براي توليد برق استفاده مي شود.

نيروگاه گازي : نيروگاهي است كه در آن از انرژي حرارتي سوخت‌هاي فسيلي گاز و مايع جهت توليد گاز داغ (دود) و مصرف آن در توربين گاز براي توليد برق استفاده مي‌شود.

نيروگاه چرخه ترکيبي : نيروگاهي است كه در آن علاوه بر انرژي الكتريكي توليد شده در توربين هاي گازي از حرارت موجود در گازهاي خروجي از توربين هاي گازي جهت توليد بخاردر يك ديگ بخار بازياب استفاده شده و بخار توليدي در يك دستگاه توربو ژنراتور بخاری توليد انرژي برق مي كند .

نيروگاه ديزلي : نيروگاهي است كه در آن از سوخت نفت گازجهت راه اندازي موتور ديزلی استفاده کرده و انرژی مکانيکی حاصله توسط ژنراتور كوپله شده با آن ، به انرژي الكتريكي تبديل مي شود.

نيروگاه برقآبي : نيروگاهي است كه در آن از انرژي پتانسيل آب انباشته شده در پشت سدها يا انرژی جرياني آب رودخانه ها جهت مصرف در توربين آبي براي توليد برق استفاده مي گردد .

نيروگاه برق بادی : مزرعه توربين هاي بادي كه برق توليدي از انرژي باد را به شبكه سراسري تغذيه مي كند را اصطلاحاً نيروگاه بادي مي گويند.

قدرت نامي : قدرت نامي يك دستگاه توربين يا دستگاه توليدي نيروي محركه از طرف سازنده بر روي پلاك مشخصات آن براي شرايط معيني بر حسب اسب بخار يا مگاوات نوشته شده است . در ماشين‎هاي كوچك قدرت نامي بر حسب كيلووات مشخص مي گردد.

قدرت عملي : بيشترين توان قابل توليد مولد در محل نصب با در نظر گرفتن شرايط محيطي(ارتفاع از سطح دريا، دماي محيط و رطوبت نسبی) است.

قدرت عملي بيشترين : قدرت عملي در فصل زمستان (يا قدرت عملي در سرد ترين روز سال ).

قدرت عملي کمترين : قدرت عملي در فصل تابستان (يا قدرت عملي در گرمترين روز سال ).

ميانگين قدرت عملي : ميانگين قدرت عملي فصلي مولدهاي برق

قدرت قابل توليد نرمال : تواني است كه يك واحد در شرايط عادي و بدون هيچگونه اشكال فني و بدون اثرات سوء بر روي واحد مي‎تواند توليد كند .

 

حداكثر قدرت توليدي همزمان با پيك بار شبكه : حداكثر قدرت توليدي همزمان واحدها در پيك بار شبكه طي يكدوره مشخص كه ممكن است از جمع قابليت توليد واحدها كمتر و يا مساوي با آن باشد .

تذكر 1 – در صورتيكه دوره انتخابي يكسال باشد ،‌ حداكثر قدرت توليد شده بعنوان پيك بار توليد شده سال آن شبكه محسوب مي گردد .

تذكر 2 – از پيك بار توليد شده ساليانه مي‎توان جهت محاسبه ضريب بار شبكه استفاده نمود .

توليد ناويژه نيروگاه : جمع انرژي توليدي مولدهاي برق يك نيروگاه كه در طي يك دوره زماني معين (مثلاً يكسال) روي پايانه خروجي مولدها بر حسب کيلووات ساعت يا مگاوات ساعت اندازه گيري مي شود .

مصرف داخلي واحد : مقدارانرژي الکتريکي كه توسط تجهيزات كمكي و جنبي يك واحد كه جهت راهبري آن چه در حالت كار و چه درحالت توقف لازم است برحسب كيلووات ساعت و در طول يكدوره مشخص را مصرف داخلي واحدگويند.

مصرف داخلي نيروگاه(فني) : جمع مصارف داخلي كه مستقيماً‌ در توليد نقش دارند (در طول يكدوره مشخص بر حسب كيلووات ساعت) مصرف داخلي فني نيروگاه مي باشد .

مصرف داخلي نيروگاه (غيرفني) : انرژی مورد استفاده داخل نيروگاه شامل انرژی مصرفی برای روشنايی معابر و تجهيزات جانبی واحد ها بدون توجه به اين نکته که اين انرژی در خود واحد توليد شده یا از منبع ديگری تامين گردد .

توليد ويژه واحد : تفاضل انرژي ناويژه واحد و مصرف داخلي واحد در يک دوره بر حسب كيلووات ساعت يا مگاوات ساعت است .

توليد ويژه نيروگاه : توليد انرژي ويژه، عبارت است از توليد انرژي برق ناويژه منهاي مصرف داخلي نيروگاهها در يك دوره معين و برحسب كيلووات ساعت يا مگاوات ساعت محاسبه مي شود.

حداكثر بار همزمان : در يك سيستم برق كاملاً‌ بهم پيوسته ، حداكثر بار همزمان روزانه، هفتگي، ماهيانه، ساليانه عبارتست از مجموع بار مناطق در لحظه حداكثر بار سيستم به مگاوات در موارديكه سيستم بهم پيوسته كل كشوررا پوشش ندهد حداكثر بار همزمان از مجموع بار حداكثر شبكه بهم پيوسته و بار مناطق مجزا به مگاوات ، بطور همزمان بدست مي آيد . با توجه به اختلاف ساعت پيك در مناطق مختلف وابسته به يك سيستم سراسري بهم پيوسته ،‌حداكثر بار همزمان كمتر از جمع بار حداكثر مناطق مي باشد .

حداكثر بار غير همزمان : عبارت از مجموع بيش‌ترين بارهاي مصرف شده در مناطق مختلف كشور در يك دوره‌ زماني معين است. بيش‌ترين بارهاي مناطق، لزوماً همزمان نيستند.

ضريب بار توليدي (شبكه) : نسبت کل انرژی توليدی طی يک دوره مشخص (عموما يک دوره يک ساله ) به حاصلضرب پيک بار سيستم و طول زمان دوره مربوطه به ساعت (عموما 8760 ساعت)

 

درصد ضريب بار سيستم = ( كل‎انرژي‎توليدي شبكه‎درطول سال / پيك بارتوليدي *8760 ساعت)*100

ضريب بار واحد : نسبت کل انرژی توليد شده در يک واحد در طی يک دوره مشخص (عموما يک دوره يک ساله) به حاصلضرب قدرت عملی واحد و ساعات کارکرد در دوره مورد نظر

درصد ضريب بار توليدی واحد = (كل ‎انرژي‎ توليدي شبكه‎درطول سال /قدرت عملی *ساعات کار)*100

ضريب بار نيروگاه ميانگين وزني ضريب بار واحدهاي آن نيروگاه است.

ضريب بهره برداري نيروگاه ، منطقه،کشور : نسبت كل انرژي توليد شده در يك نيروگاه، منطقه يا کشور طي يك دوره مشخص (عموماً يك دوره يكساله) به حاصلضرب قدرت عملي نيروگاه،منطقه یا کشور و طول زمان دوره مربوط به ساعت.

درصد ضريب ‎بهره ‎برداري = (انرژي توليدي ناويژه/ قدرت عملي * 8760)*100

ضريب آمادگي

ضريب آمادگي= (قدرت قابل تولبد/قدرت عملي)*100

ضريب نا آمادگي

ضريب آمادگي= (مجموع قدرت غير آماده بهره برداري/قدرت عملي)*100

ضريب خروج اضطراري

ضريب خروج اضطراري =(خروجي ها و محدوديت هاي اضطراري/قدرت عملي)*100

نرخ خروج اضطراري

نرخ خروج اضطراري=(خروجي ها و محدوديت هاي اضطراري /خروجي ها و محدوديت هاي اضطراري + ذخيره گردان + توليد شده ) * 100

نرخ گرمايش ويژه : ميزان حرارت مصرفي براي توليد هر كيلووات ساعت را گرمايشي ويژه گويند كه به كيلوكالري بر كيلووات ساعت نشان داده مي‎شود .

نرخ گرمايشي= (انرژي حرارتي مصرفي/انرژي الکتريکي توليدي ناويژه)

ارزش حرارتی : مقدار انژی حرارتی که از سوختن يک واحد سوخت حاصل ميشود و بر حست کيلو کالری يا Btu سنجيده می گردد .

راندمان حرارتی : با توجه به اين كه انرژي حرارتي يك كيلووات ساعت برق به طور ثابت 860 كيلو كالري است، بازده واحدها يا نيروگاه‌هاي حرارتي از طريق فرمول زير به دست مي‌آيد:

راندمان حرارتي به درصد= (860 /انرژي حرارتي مصرفي به ازاي يك كيلووات ساعت برق توليد شده)*100

قدرت توليد شده در پيك : تواني است كه واحد در زمان پيك توليد كرده است .

قدرت يا انرژي وارد شده (واردات) : عبارتست از مجموع قدرت يا انرژي وارد شده از طريق خطوط فرامنطقه اي (اين رقم با علامت منفي در گزارش‎هاي ديسپاچينگ ملي نمايش داده مي شود) .

ذخيره : تفاضل توان قابل توليد و توان توليد شده درپيك است

ذخيره گردان : تفاضل توان قابل توليد و توان توليد شده واحدهاي در مدار در زمان پيك است

ذخيره غيرگردان : توان قابل توليد واحد يا واحدهاي خارج از مدار كه آماده بهره برداري مي باشند .

ذخيره توليد : نسبت مجموع ذخيره هاي گردان و غيرگردان به كل قدرت قابل تأمين در زمان پيك مي باشد و نشان‎دهنده ميزان ظرفيت توليد آماده اي است كه جهت استفاده در مواقع اضطراري و تغييرات ناگهاني بار بكار مي آيد .

قدرت يا انرژي خارج شده (صادرات) : عبارتست از مجموع قدرت يا انرژي خارج شده از طريق خطوط فرامنطقه اي (اين رقم با علامت مثبت در گزارش‎هاي ديسپاچينگ ملي نمايش داده مي شود).

معادل افت فركانس : بخشي از انرژي يا توان مورد نياز مصرف كه در اثر كاهش يا افزايش فركانس از حد نامي ، از بار نامي سيستم كاسته و يا افزوده مي شود .

نياز مصرف : مجموع بار مورد نياز شبكه ، از جمع بار توليد شده توسط مجموع توليد ناويژه نيروگاه ها ،دريافتي از كشورهاي همجوار، معادل افت فركانس ، معادل خاموشي اعمال شده را نياز مصرف مي‎گويند . نياز مصرف به صورت توان در پيك و انرژي در يك دوره زماني تعيين مي گردد.

ضريب بار كل :

ضريب بار كل از فرمول زير محاسبه مي گردد.

ضريب بار كل =(100* نياز مصرف انرژي كل/24 × قدرت مصرف شده)

نياز مصرف اصلاح شده : مجموع نياز مصرف شبكه و معادل اعمال مديريت صنايع را نياز مصرف اصلاح شده مي گويند.

انرژي توليد نشده ناشي از محدوديت هاي داخلي :انرژی توليد نشده واحد به دليل معايب و محدوديت های ايجاد شده روي واحد و يا تجهيزات كمكي.

انرژي توليد نشده ناشي از محدوديت داخلي بر اساس قدرت عملي فصلي= زمان محدوديت * مقدار محدوديت در قدرت عملی فصلی نحوه محاسبه : زمان محدوديت × مقدار محدوديت در قدرت عملي فصلي برابر است با انرژي توليد نشده ناشي از محدوديت داخلي بر اساس قدرت عملي فصلي.

انرژي توليد نشده ناشي از محدوديت هاي خارجي : انرژي توليد نشده واحد به دليل معايب و محدوديت‎هاي اعمال شده به نيروگاه توسط عوامل خارجي(شبكه ، سوخت ، منابع آب پشت سدها و غيره) كه بهره برداري نيروگاه در آن نقشي ندارد

نحوه محاسبه: انرژي توليد نشده ناشي از محدوديت خارجي بر اساس قدرت عملي فصلي برابر است با

زمان محدوديت * مقدار محدوديت در قدرت عملي فصلي برابر است با انرژي توليد نشده ناشي از محدوديت هاي خارجي بر اساس قدرت عملي فصلي

نيروگاه هاي اختصاصی : اين نيروگاه ها متعلق به صنايع بزرگ نظير(فولاد مباركه ، ذوب آهن ، مس سرچشمه و …) هستند و برق توليد مي كنند و امكان داد و ستد انرژي با شبكه هاي وزارت نيرو در آنها وجود دارد.

سهم برق از مصرف انرژی نهايي : مصرف انرژي برق تقسيم بر مصرف نهايی انرژی

مقدار آلاينده های محلی در توليد برق : ميزان انتشار ذرات معلق BOD,COD,SO2,NOX تقسيم بر کيلووات ساعت توليد ناخالص (هريک جداگانه)و واحدآن ppm,ppb است .

ضريب ذخيره : ضريب ذخيره کشور از رابطه زير محاسبه می شود:

ضريب ذخيره=( (100* (حداکثر نياز مصرف – ظرفيت عملي كل نيروگاهها) /حداكثر نياز مصرف))

کمبود ضريب ذخيره :

كمبود ضريب ذخيره از رابطه زير محاسبه مي شود :

كمبود ضريب ذخيره=( (100* (حداکثر نياز مصرف – ظرفيت عملي كل نيروگاهها) /حداكثر نياز مصرف))

متوسط کارکرد نيروگاه : متوسط ساعت کارکرد واحد های يک نيروگاه

مصرف مخصوص آب نيروگاه برق آبی : عبارت است از متوسط ميزان آب عبوری از دريجه های سد برای توليد يک واحد انرژی الکتريکی

تنظیم شده : سایت امداد برق پایتخت – مقالات